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Abstract  — This paper describes two new artificial 
frequency mapping techniques suitable for the simulation of 
RF/Microwave mixers when excited by a multi-tone signal. 
Due to the gained computational efficiency, it is for the first 
time possible to simultaneously analyze small and large signal 
behavior of nonlinear mixers subject to real multi-tone 
signals. Besides the theoretical study, illustrative simulation 
results will also be given. 

I. INTRODUCTION 

The RF/Microwave Mixer is a fundamental block in 
nowadays communication systems. Because of its 
nonlinear nature, it generates nonlinear distortion that will 
degrade SNR needed for good communication quality. 

Traditionally, this nonlinear block was simulated and 
measured using a two-tone input signal. Nowadays, with 
the recent growth in the wireless industry, new and more 
complex forms of spectra have to be simulated. Time-
varying Volterra series has already been applied to multi-
tone problems in mixers. But, because of its rapidly 
increasing complexity for orders higher then three, only 
small nonlinear problems can be analyzed [1]. 

Since the local oscillator, LO, and RF input signals can 
normally be assumed as uncorrelated, the alternative 
method presented in this paper uses the well-known 
harmonic balance, HB, coupled with an artificial 
frequency mapping technique, AFM, specially developed 
for this type of simulations. 

Artificial frequency mappings can be applied to either 
diamond or box truncation spectra [2]. Since both of these 
truncation schemes have advantages and shortcomings, we 
will begin by discussing their main problems. Then, new 
ways of circumventing those difficulties will be given. 

We begin by noting the improved simulation efficiency 
obtained with diamond truncation in non-frequency 
converters subject to equally spaced multi-tone excitations 
(ωRF = ωRF0 + k∆ω, k∈Z), as compared to the one provided 
by box truncation [3]. This efficiency gain is due to the 
fact that diamond truncation mimics the natural way of 
generating nonlinear mixing products in band limited 

systems, thus saving frequency points of negligible 
amplitude. 

Conversely, box truncation has shown to be more 
appropriate for cases where clear distinct orders are 
needed for each of the excitation tones. This is the case of 
small-signal mixers, where the diamond truncation looses 
effectiveness since it considers the maximum mixing order 
of the RF input signal, equal to the maximum mixing order 
needed for the much stronger local oscillator pump. In 
fact, in a typical non-saturating mixer, the best choice 
consists in using an appropriate mixing order for the RF, 
and a reasonably larger one for the LO. Nevertheless, the 
multi-tone RF signal nature determines that even if an 
asymmetric box truncation for the LO and RF were 
considered, the number of generated RF mixing terms 
would be much larger than the minimum needed to 
correctly represent it. 

These facts ask for an optimized index vector generation, 
based on a mixed truncation scheme: box truncation for 
the LO (large-signal) and diamond truncation for the RF 
(small-signal). That constitutes the first AFM conceived to 
take profit of the specific characteristics of multi-tone 
mixer simulation. 

If the RF and LO signals are both large, that is, if the RF 
amplitude is comparable to the pump, driving the mixer 
close to saturation, there is no point in treating them 
differently. In that case, a more efficient AFM, completely 
based on the diamond truncation scheme, is preferred. 

The discussion of these novel two AFMs conceived for 
equally spaced multi-tone mixer simulation is the main 
objective of this paper. So, their underlining ideas will be 
first presented, followed by a correspondent performance 
comparison. Finally, an illustrative application is 
addressed where a real RF mixer will be simulated using 
those proposed mapped spectra. 

II. PROPOSED ARTIFICIAL FREQUENCY MAPPING 

TECHNIQUES 

As anticipated in the Introduction, we begin by 
proposing an AFM based on a mixed truncation scheme: 
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diamond truncation for the RF equally spaced multi-tone 
signal, and box truncation for the LO. The algorithm 
necessary for its mapped frequency index generation is 
very simple, and can be divided into two steps. 

The first step consists in applying the AFM for diamond 
truncation spectra previously developed for amplifiers [3] 
to our equally spaced multi-tone RF input. This mapped 
spectrum, composed of a certain number of adjacent 
clustered mixing products, is shown in Fig. 1. 

In the second step, this diamond truncated mapped 
spectrum is considered as a new composite tone to be 
mixed with the LO. The resulting mixing products are then 
box truncated, Fig. 2, and another AFM considered. The 
obtained spectrum corresponds to the dense and periodic 
frequency index vector used for simulating the mixer. 
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Fig.1 Output diamond truncated RF mapped spectrum. 

 
Expression (1) presents the total number of resulting 

clusters considered in this case. 
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where ORF and OLO are the RF nonlinear order and the LO 
nonlinear order considered, respectively. 

If the LO and the RF are comparable in magnitude, they 
should be treated uniformly. The traditional diamond 
truncation constitutes, thus, a better choice. In this case, 
the alternative AFM is based on a diamond truncation 
scheme specially designed for uniformly discretized 
spectra mixed with another uncorrelated LO tone (ωRF = 
ωRF0 + k1∆ω, but ωLO ≠ ωRF0 + k2∆ω , k1,k2∈Z). Fig. 3 
presents the spectrum to be mapped. 
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Fig. 3 Real mixer input spectrum. 

The algorithm now proposed for the generation of the 
mapped spectrum, consists in three different steps. 

The first step considers that the input spectrum is a two-
tone signal. One of these imaginary tones is the local 
oscillator, while the other is located at the center of the RF 
signal. This generation gives rise to the mixing presented 
on Tab. 1, for the example of a third order nonlinearity. 
Each of these mixing terms creates a clustered spectrum. 

With the knowledge of how much RF terms are 
produced in each cluster, the second step consists in 
generating the corresponding spectral regrowth, using the 
formulas already developed in [4]. 
Because the direct application of the general rules of 
diamond truncation AFM would not generate a periodic 
mapped spectrum, third step enforces that periodicity by 
inserting a certain number of zeros between spectrum 
clusters. This number of zeros can be determined by, first 
considering the LO and RF as a two-tone signal, and (as 
before) simply ignoring the zeros present between each of 
these clusters. Then, the various numbers of zeros between 
the output RF (spectral regrowth included) and the LO are 
determined for each cluster. The number of zeros required 
for guaranteeing a harmonically related mapped spectrum 
is equal to the minimum of those. This way, it is possible 
to generate a new artificially mapped spectrum that is 
periodic and compact. Although not ideally optimum, the 
resulting final spectrum is much more efficient to handle 
than the original one. Fig. 4 depicts the resulting mapped 
spectrum, while Tab. 2 presents the number of frequency 
positions required for a large number of input tones. 
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Fig.2 Final mapped spectrum obtained from a diamond truncation AFM to the RF, followed by a box truncation AFM. 
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Tab.1– Two tone cluster generation for a third order nonlinearity. 

Cluster Base-Band In-Band 2nd Harmonics 3rd Harmonics 

Mixing Terms DC RF-LO 2LO-RF LO RF 2RF-LO 2LO LO+RF 2RF 2LO+RF 3LO 3RF 2RF+LO 

 

DC RF-LO 2LO-RF LO RF 2RF-20 2LO LO+RF 2RF 2LO+RF 3LO 3RF 2RF+LO

A

ω 
Fig.4 Output mapped spectrum. corresponding to the example shown on Tab.2. 

 
Tab.2– Total number of frequency positions handled in the diamond/diamond truncation AFM. 

Order Parity Number of real terms Number of Zeros Total Number 

Even 
8

1013 2 OO
Nt

−≈  
4

422 2 +−≈ OO
Nz  )(

2 zt NN
O

N +≈  

Odd 
8

71213 2 +−≈ OO
Nt  

4

422 2 +−≈ OO
Nz  )(

2

1
zt NN

O
N ++≈  

 

III. COMPARISON OF THE TWO PROPOSED AFMS 

Although by now it should be obvious that the 
diamond/box truncation AFM is more suitable for the 
simulation of quasi-linear mixers, while the 
diamond/diamond truncation AFM should be used for 
simulating mixers driven into saturation, the frontier 
between these two asymptotic behaviors is still unclear. 
Therefore, a remaining question dealing with the selection 
of the most appropriate technique for a particular case 
must be addressed. 

 
Fig.5 Relation between the size of the frequency index vector 

resulting from diamond/diamond truncation (filled), and 
diamond/diamond truncation (unfilled) AFMs. 

 
For answering this question, the number of terms arising 
from the application of each of the discussed AFMs, as a 

function of the orders ORF and OLO, is presented on Fig.5, 
for a very large number of input tones. 

The xx axis of Fig. 5 is the LO order, the yy axis is the 
RF order, and the zz axis is the number of frequency 
positions required in the index vector. 

Considering, for obvious reasons, that OLO≥ORF (right 
octant in Fig. 5), it is possible to conclude that 
diamond/diamond truncation AFM is only preferable in 
cases of similar OLO and ORF. In any other situation, 
diamond/box truncation AFM is better. For example, for 
OLO=9 and ORF=3, Ndiam/diam≈743 and Nbox/diam≈171, but if 
OLO=9 and ORF=7, then Ndiam/diam≈743 and Nbox/diam≈931. 

In summary, if a small-signal mixer is to be simulated - 
ORF<<OLO - then mixed diamond/box truncation scheme 
should be used, in order to minimize computational 
workload. If, on the other hand, the mixer stimulus is a 
large-signal RF excitation, ORF≈OLO, then a completely 
diamond truncation scheme AFM is the correct option. 
This conclusion is quite surprising because, in this case, 
the resulting spectrum is not dense. The requirement of a 
periodic frequency index vector imposed the insertion of a 
certain number of zeros, and, even so, the total number of 
frequency index vector positions to be simulated remained 
smaller. 

IV. REAL MIXER ILLUSTRATIVE SIMULATION 

For illustrative purposes, an RF cold-FET mixer was 
simulated in its large-signal operation regimes. The 
frequency index vector used in the HB analysis, is based 
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on the completely diamond truncation artificial frequency 
mapping. Fig. 6 presents a simplified diagram of the RF 
cold-FET mixer circuit. 
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Fig.6 Simplified diagram of the cold-FET mixer circuit used in 

the simulation examples. 
 

A LO of 1.7GHz and a 5-tone RF input signal near 
2GHz were considered as the stimulus of an in-house 
AFM-HB simulator [3]. Fig. 7.a) and b) present the 
complete output signal spectrum, and its 0th and 1st order 
LO components, respectively. 
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b) 

Fig.7 Complete output signal, a);  
0th and 1st order LO components b). 

 
Fig. 7.a), shows the entire simulated spectrum. The 

values of –200dBm (approximately null power), are the 

adopted numeric representation of the zeros used to 
convert the mapped spectrum into a periodic one. The IF 
spectrum is the sought output frequency band, as depicted 
in Fig. 7.b). There, it is possible to see the fundamental 
output spectrum, and adjacent spectral regrowth 
components. In the same figure the other three most 
important bands of the mixer are also represented: RF 
input, LO and the image frequency. A precise control of 
the terminating impedances, and incoming signals of these 
four bands, plays a key role on mixer design and 
performance optimization. 

V. CONCLUSION 

Two new artificial frequency mapping techniques 
specially conceived for the simulation of quasi-linear and 
saturated RF/microwave mixers subject to multi-tone 
excitations were proposed and discussed. 

The complete diamond AFM technique was then 
validated by the HB analysis of a real cold-FET mixer. 

With the aid of this new CAD capability it is now 
possible to efficiently analyze and design general small-
signal or saturated frequency converter circuits. 
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